Unconventional spectral signature of Tc in a pure d-wave superconductor

  • 1.

    Tinkham, M. Introduction to superconductivity (Dover, 2004).

  • 2.

    Schrieffer, JR & Brooks, JS Handbook of high temperature superconductivity: theory and experiment (Springer, 2007).

  • 3.

    Damascelli, A., Hussain, Z. & Shen, Z.-X. Angular-resolution photoemission studies of cuprate superconductors. Rev. Mod. Phys. 75473–541 (2003).

    ADS CAS Article Google Scholar

  • 4.

    Kondo, T. et al. Unraveling the formation of Cooper pairs above the transition temperature from the pseudogap state in cuprates. Nat. Phys. seven21–25 (2011).

    CAS Google Scholar Article

  • 5.

    Reber, TJ et al. The origin and non-quasi-particle nature of Fermi arcs in Bi2sr2CaCu2O8+δ. Nat. Phys. 8606–610 (2012).

    CAS Google Scholar Article

  • 6.

    Kondo, T. et al. Point nodes persisting well beyond Jvs in Bi2212. Nat. Commmon. 67699 (2015).

    Article on Google Scholar Ads

  • seven.

    Zaki, N. et al. Cuprate phase diagram and influence of nanoscale inhomogeneities. Phys. Rev. B 96195163 (2017).

    Article on Google Scholar Ads

  • 8.

    Chen, S.-D. et al. Incoherent strange metal strongly bounded by critical Bi2212 doping. Science 3661099-1102 (2019).

    ADS CAS Article Google Scholar

  • 9.

    Him, Y. et al. Superconducting Fluctuations in Overdoped Bi2sr2CaCu2O8+δ. Phys. Rev. X 11031068 (2021).

    CAS Google Scholar

  • ten.

    Hashimoto, M. et al. Direct spectroscopic evidence for phase competition between pseudogap and superconductivity in Bi2sr2CaCu2O8+δ. Nat. Mater. 1437–42 (2014).

    Article on Google Scholar Ads

  • 11.

    Reber, TJ et al. Matching, breaking pairs and their roles in establishing the Jvs high temperature cuprate superconductors. Preprint at https://arxiv.org/abs/1508.06252 (2015).

  • 12.

    Gomes, KK et al. Visualize atomic-scale pair formation in theJvs Bi superconductor2sr2CaCu2O8+δ. Nature 447569-572 (2007).

    ADS CAS Article Google Scholar

  • 13.

    Timusk, T. & Statt, B. The pseudogap in high-temperature superconductors: an experimental investigation. Program Reports. Physical. 6261-122 (1999).

    ADS CAS Article Google Scholar

  • 14.

    Loram, JW, Luo, J., Cooper, JR, Liang, WY & Tallon, JL Proof on pseudogap and electron specific heat condensate. J.Phys. Chem. Solids 6259–64 (2001).

    ADS CAS Article Google Scholar

  • 15.

    Tallon, JL, Storey, JG, Cooper, JR & Loram, JW Localization of the pseudogap closure point in cuprate superconductors: absence of reentrant or reentrant behavior. Phys. Rev. B 101174512 (2020).

    ADS CAS Article Google Scholar

  • 16.

    Keimer, B., Kivelson, SA, Norman, MR, Uchida, S. & Zaanen, J. From quantum matter to high temperature superconductivity in copper oxides. Nature 518179–186 (2015).

    ADS CAS Article Google Scholar

  • 17.

    Mannella, N. et al. Correction of nonlinearity effects in detectors for electron spectroscopy. J. Electronic spectros. 14145–59 (2004).

    CAS Google Scholar Article

  • 18.

    Reber, TJ, Plumb, NC, Waugh, JA & Dessau, DS Effects, determination, and correction of count rate nonlinearity in multichannel analog electron detectors. Rev. Science. Instrument. 85043907 (2014).

    ADS CAS Article Google Scholar

  • 19.

    Kondo, T. et al. Formation of gapless Fermi arcs and order fingerprints in the pseudogap state of cuprate superconductors. Phys. Rev. Lett. 111157003 (2013).

    Article on Google Scholar Ads

  • 20.

    Norman, MR, Randeria, M., Jankó, B. & Campuzano, JC Condensation energy and spectral functions in high temperature superconductors. Phys. Rev. B 6114742 (2000).

    ADS CAS Article Google Scholar

  • 21.

    Cuk, T. et al. Coupling of B1g phonon to the antinodal electronic states of Bi2sr2California0.92Yes0.08Cu2O8+δ. Phys. Rev. Lett. 93117003 (2004).

    ADS CAS Article Google Scholar

  • 22.

    Sobota, JA, He, Y. & Shen, Z.-X. Angular-Resolved Photoemission Studies of Quantum Materials. Rev. Mod. Phys. 93025006 (2021).

    ADS CAS Article Google Scholar

  • 23.

    Emery, VJ & Kivelson, SA Importance of phase fluctuations in superfluid low-density superconductors. Nature 374434–437 (1995).

    ADS CAS Article Google Scholar

  • 24.

    Wang, Y. et al. Field-enhanced diamagnetism in the pseudogap state of cuprate Bi2sr2CaCu2O8+δ superconductor in a strong magnetic field. Phys. Rev. Lett. 95247002 (2005).

    Article on Google Scholar Ads

  • 25.

    Li, L et al. Diamagnetism and Cooper pairing above Jvs in cuprates. Phys. Rev. B 81054510 (2010).

    Article on Google Scholar Ads

  • 26.

    Uemura, YJ et al. Magnetic Field Penetration Depth in TI2Ba2CuO6+δ in an overdoped regime. Nature 364605–607 (1993).

    ADS CAS Article Google Scholar

  • 27.

    Božović, I., He, X., Wu, J. & Bollinger, AT Critical temperature dependence in superfluid density overdoped copper oxides. Nature 536309-311 (2016).

    Article on Google Scholar Ads

  • 28.

    Eckl, T., Scalapino, DJ, Arrigoni, E. & Hanke, W. Pair phase fluctuations and pseudogap. Phys. Rev. B 66140510 (2002).

    Article on Google Scholar Ads

  • 29.

    Franz, M. & Millis, AJ Phase fluctuations and spectral properties of underdoped cuprates. Phys. Rev. B 5814572–14580 (1998).

    ADS CAS Article Google Scholar

  • 30.

    Berg, E. & Altman, E. Evolution of the Fermi surface of Dwave superconductors in the presence of thermal phase fluctuations. Phys. Rev. Lett. 99247001 (2007).

    Article on Google Scholar Ads

  • 31.

    Lee-Hone, NR, Dodge, JS & Broun, DM Disorder and superfluid density in overdoped cuprate superconductors. Phys. Rev. B 96024501 (2017).

    Article on Google Scholar Ads

  • 32.

    Li, Z.-X., Kivelson, SA & Lee, D.-H. Superconductor-metal transition in overdoped cuprates. npj Quantum Matter. 636 (2021).

    Article on Google Scholar Ads

  • 33.

    Kosterlitz, JM & Thouless, DJ Ordering, metastability and phase transitions in two-dimensional systems. J.Phys. VS 61181-1203 (1973).

    ADS CAS Article Google Scholar

  • 34.

    Janke, W. & Matsui, T. Crossover in the XY three-dimensional model. Phys. Rev. B 4210673–10681 (1990).

    ADS CAS Article Google Scholar

  • 35.

    Presland, MR, Tallon, JL, Buckley, RG, Liu, RS & Flower, NE General trends in the effects of oxygen stoichiometry on Jvs in Bi and Tl superconductors. Physics C 17695-105 (1991).

    ADS CAS Article Google Scholar

  • 36.

    Chen, S.-D. High-precision photoemission study of overdoped Bi2212 superconductors. Doctoral thesis, Stanford Univ. (2021).

  • About Roberto Frank

    Check Also

    OnePlus 10 Pro: long-term review

    Over the years, OnePlus has managed to transform itself from an emerging player into a …