Tinkham, M. Introduction to superconductivity (Dover, 2004).
Schrieffer, JR & Brooks, JS Handbook of high temperature superconductivity: theory and experiment (Springer, 2007).
Damascelli, A., Hussain, Z. & Shen, Z.-X. Angular-resolution photoemission studies of cuprate superconductors. Rev. Mod. Phys. 75473–541 (2003).
Kondo, T. et al. Unraveling the formation of Cooper pairs above the transition temperature from the pseudogap state in cuprates. Nat. Phys. seven21–25 (2011).
Reber, TJ et al. The origin and non-quasi-particle nature of Fermi arcs in Bi2sr2CaCu2O8+δ. Nat. Phys. 8606–610 (2012).
Kondo, T. et al. Point nodes persisting well beyond Jvs in Bi2212. Nat. Commmon. 67699 (2015).
Zaki, N. et al. Cuprate phase diagram and influence of nanoscale inhomogeneities. Phys. Rev. B 96195163 (2017).
Chen, S.-D. et al. Incoherent strange metal strongly bounded by critical Bi2212 doping. Science 3661099-1102 (2019).
Him, Y. et al. Superconducting Fluctuations in Overdoped Bi2sr2CaCu2O8+δ. Phys. Rev. X 11031068 (2021).
Hashimoto, M. et al. Direct spectroscopic evidence for phase competition between pseudogap and superconductivity in Bi2sr2CaCu2O8+δ. Nat. Mater. 1437–42 (2014).
Reber, TJ et al. Matching, breaking pairs and their roles in establishing the Jvs high temperature cuprate superconductors. Preprint at https://arxiv.org/abs/1508.06252 (2015).
Gomes, KK et al. Visualize atomic-scale pair formation in theJvs Bi superconductor2sr2CaCu2O8+δ. Nature 447569-572 (2007).
Timusk, T. & Statt, B. The pseudogap in high-temperature superconductors: an experimental investigation. Program Reports. Physical. 6261-122 (1999).
Loram, JW, Luo, J., Cooper, JR, Liang, WY & Tallon, JL Proof on pseudogap and electron specific heat condensate. J.Phys. Chem. Solids 6259–64 (2001).
Tallon, JL, Storey, JG, Cooper, JR & Loram, JW Localization of the pseudogap closure point in cuprate superconductors: absence of reentrant or reentrant behavior. Phys. Rev. B 101174512 (2020).
Keimer, B., Kivelson, SA, Norman, MR, Uchida, S. & Zaanen, J. From quantum matter to high temperature superconductivity in copper oxides. Nature 518179–186 (2015).
Mannella, N. et al. Correction of nonlinearity effects in detectors for electron spectroscopy. J. Electronic spectros. 14145–59 (2004).
Reber, TJ, Plumb, NC, Waugh, JA & Dessau, DS Effects, determination, and correction of count rate nonlinearity in multichannel analog electron detectors. Rev. Science. Instrument. 85043907 (2014).
Kondo, T. et al. Formation of gapless Fermi arcs and order fingerprints in the pseudogap state of cuprate superconductors. Phys. Rev. Lett. 111157003 (2013).
Norman, MR, Randeria, M., Jankó, B. & Campuzano, JC Condensation energy and spectral functions in high temperature superconductors. Phys. Rev. B 6114742 (2000).
Cuk, T. et al. Coupling of B1g phonon to the antinodal electronic states of Bi2sr2California0.92Yes0.08Cu2O8+δ. Phys. Rev. Lett. 93117003 (2004).
Sobota, JA, He, Y. & Shen, Z.-X. Angular-Resolved Photoemission Studies of Quantum Materials. Rev. Mod. Phys. 93025006 (2021).
Emery, VJ & Kivelson, SA Importance of phase fluctuations in superfluid low-density superconductors. Nature 374434–437 (1995).
Wang, Y. et al. Field-enhanced diamagnetism in the pseudogap state of cuprate Bi2sr2CaCu2O8+δ superconductor in a strong magnetic field. Phys. Rev. Lett. 95247002 (2005).
Li, L et al. Diamagnetism and Cooper pairing above Jvs in cuprates. Phys. Rev. B 81054510 (2010).
Uemura, YJ et al. Magnetic Field Penetration Depth in TI2Ba2CuO6+δ in an overdoped regime. Nature 364605–607 (1993).
Božović, I., He, X., Wu, J. & Bollinger, AT Critical temperature dependence in superfluid density overdoped copper oxides. Nature 536309-311 (2016).
Eckl, T., Scalapino, DJ, Arrigoni, E. & Hanke, W. Pair phase fluctuations and pseudogap. Phys. Rev. B 66140510 (2002).
Franz, M. & Millis, AJ Phase fluctuations and spectral properties of underdoped cuprates. Phys. Rev. B 5814572–14580 (1998).
Berg, E. & Altman, E. Evolution of the Fermi surface of Dwave superconductors in the presence of thermal phase fluctuations. Phys. Rev. Lett. 99247001 (2007).
Lee-Hone, NR, Dodge, JS & Broun, DM Disorder and superfluid density in overdoped cuprate superconductors. Phys. Rev. B 96024501 (2017).
Li, Z.-X., Kivelson, SA & Lee, D.-H. Superconductor-metal transition in overdoped cuprates. npj Quantum Matter. 636 (2021).
Kosterlitz, JM & Thouless, DJ Ordering, metastability and phase transitions in two-dimensional systems. J.Phys. VS 61181-1203 (1973).
Janke, W. & Matsui, T. Crossover in the XY three-dimensional model. Phys. Rev. B 4210673–10681 (1990).
Presland, MR, Tallon, JL, Buckley, RG, Liu, RS & Flower, NE General trends in the effects of oxygen stoichiometry on Jvs in Bi and Tl superconductors. Physics C 17695-105 (1991).
Chen, S.-D. High-precision photoemission study of overdoped Bi2212 superconductors. Doctoral thesis, Stanford Univ. (2021).